Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Domest Anim ; 59(4): e14566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627959

RESUMO

Early pregnancy loss is a primary cause of low reproductive rates in dairy cows, posing severe economic losses to dairy farming. The accurate diagnosis of dairy cows with early pregnancy loss allows for oestrus synchronization, shortening day open, and increasing the overall conception rate of the herd. Several techniques are available for detecting early pregnancy loss in dairy cows, including rectal ultrasound, circulating blood progesterone, and pregnancy-associated glycoproteins (PAGs). Yet, there is a need to improve on existing techniques and develop novel strategies to identify cows with early pregnancy loss accurately. This manuscript reviews the applications of rectal ultrasound, circulating blood progesterone concentration, and PAGs in the diagnosis of pregnancy loss in dairy cows. The manuscript also discusses the recent progress of new technologies, including colour Doppler ultrasound (CDUS), interferon tau-induced genes (ISGs), and exosomal miRNA in diagnosing pregnancy loss in dairy cows. This study will provide an option for producers to re-breed cows with pregnancy loss, thereby reducing the calving interval and economic costs. Meanwhile, this manuscript might also act as a reference for exploring more economical and precise diagnostic technologies for early pregnancy loss in dairy cows.


Assuntos
Doenças dos Bovinos , Progesterona , Gravidez , Feminino , Bovinos , Animais , Aborto Animal/diagnóstico , Reprodução , Fertilização , Glicoproteínas , Inseminação Artificial/veterinária , Doenças dos Bovinos/diagnóstico
2.
Endocrine ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285410

RESUMO

Gonadotropin inhibitory hormone (GnIH) is essential for regulating the reproduction of mammals and inhibiting testicular activities in mice. This study aimed to explore the mechanism of GnIH on spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis of mice. Mice were subcutaneously injected with different doses of GnIH (1 µg/150 µL, 3 µg/150 µL, 6 µg/150 µL, 150 µL saline, twice daily) for 11 days. Subsequently, luteinizing hormone (LH), testosterone (T), and inhibin B (INH B) levels of peripheral blood were determined, and the expression of GnRH synthesis-related genes (GnRH-1, Kiss-1, NPY) and gonadotropin synthesis-related genes (FSH ß, LH ß, GnRH receptor) in the hypothalamus and pituitary gland were respectively detected. Additionally, the expression of steroidogenesis-related genes/proteins (P450scc, StAR and 3ß-HSD) and spermatogenesis-related proteins/genes including LH receptor (LHR), androgen receptor (AR), heat shock factor-2 (HSF-2) and INH B were analyzed using western blot and q-PCR. Results showed that GnIH treatment significantly reduced the concentration of LH in the peripheral blood. Further analysis revealed that GnIH treatment markedly reduced the expression of GnRHImRNA and Kiss-1 mRNA in the hypothalamus, and mRNA levels of FSH ß, LH ß, and GnRHR genes in the pituitary. We also observed that GnIH treatment significantly decreased T levels and expression of the P450scc, StAR, and 3ß-HSD proteins in the testis. Furthermore, GnIH treatment down-regulated LHR, AR proteins, and HSF-2 gene in the testis. Importantly, the INH B concentration of and INH ßb mRNA levels significantly declined following GnIH treatment. Additionally, GnIH treatment may induce germ cell apoptosis in the testis of mice. In conclusion, GnIH may suppress spermatogenesis and steroidogenesis by acting through the hypothalamus-pituitary-testis axis in mice.

3.
Steroids ; 202: 109349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072091

RESUMO

RFRP-3 is a functional ortholog of avian GnIH and regulates reproductive activities in the gonads of animals. However, the role of RFRP-3 in the function of ovarian granulosa cells in mice remains unclear. First, we detected the expression of the RFRP-3 receptor (GPR147) in the ovarian granulosa cells of mice. Second, the effect of RFRP-3 treatment on estradiol and progesterone secretions from granulosa cells was tested by ELISA. Meanwhile, the expression of genes and proteins regulating steroid hormone synthesis was respectively examined by qPCR and western blot. Furthermore, the effect of RFRP-3 treatment on the apoptosis of granulosa cells was analyzed. The results revealed that the GPR147 protein (a RFRP-3 receptor) was expressed in the ovarian granulosa cells of mice. Low and medium doses RFRP-3 treatment significantly reduced progesterone secretion in the granulosa cells (P < 0.05), while RFRP-3 suppressed p450scc, 3ß-HSD, StAR, and FSHR expression in a non-dose-dependent manner. Moreover, RFRP-3 treatment might induce the apoptosis of granulosa cells. Additionally, low doses RFRP-3 significantly reduced p-ERK1/2 protein expression (P < 0.05) in the ovarian granulosa cells. We here, for the first time, confirmed that GPR147 was expressed in the ovarian granulosa cells of mice. Our findings suggested that and RFRP-3 regulates the granulosa cell function through the ERK signaling pathway, which will lay the foundation for uncovering molecular mechanisms by which RFRP-3 regulates follicle development in future.


Assuntos
Neuropeptídeos , Progesterona , Receptores de Neuropeptídeos , Feminino , Camundongos , Animais , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Progesterona/farmacologia , Células da Granulosa , Apoptose
4.
Animals (Basel) ; 13(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067044

RESUMO

Postpartum uterine involution is necessary for the normal reproduction of dairy cows. The study aimed to investigate the pattern of postpartum uterine involution and the impact of parity on uterine involution in Chinese Holstein dairy cows. The diameter of the uterine cervix, pregnant uterine horn, and non-pregnant uterine horn were monitored using a B-mode veterinary ultrasound scanner at 5, 10, 15, 20, 25, 30, 35, and 40 days, respectively, after parturition in both multiparous and primiparous dairy cows. Meanwhile, the concentrations of hydroxyproline, E2, and IGF-1 were detected using ELISA at 5, 10, 15, 20, 30, and 40 d after parturition in both multiparous and primiparous dairy cows. Furthermore, the duration of uterine involution was compared in the multiparous and primiparous dairy cows. The results demonstrated that the diameter of the uterine cervix and the pregnant uterine horn did not decrease any further at 25 days postpartum for both the multiparous cows and the primiparous cows. Hydroxyproline levels gradually decreased with uterine involution; however, there was no significant variation in IGF-1 concentrations during uterine involution in the dairy cows. Although E2 concentrations of the peripheral plasma displayed an upward trend from day 5 to day 15 in the two groups of postpartum cows, there was no significant difference between the two groups during uterine involution. These results suggest that postpartum uterine involution was around 25 days postpartum in both the primiparous dairy cows and the multiparous Chinese Holstein dairy cows. Parity did not affect uterine involution in the postpartum Chinese Holstein dairy cows. The hydroxyproline levels of the peripheral blood may be an indicator of uterine involution in postpartum cows. Nonetheless, IGF-1 and E2 levels of the periphery blood are not associated with uterine involution in Chinese Holstein dairy cows.

5.
Acta Parasitol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087038

RESUMO

PURPOSE: Ticks are dangerous ectoparasites for humans and other animals, and tick-borne pathogens of Bactrian camels have been epidemiologically surveyed in Gansu Province, China. We aimed to determine the current distribution of tick-borne pathogens among Bactrian camels in Gansu during August 2013 using molecular tools. METHODS: All ticks underwent morphological identification. We extracted DNA from the blood samples and ticks, screened them for Theileria, Babesia, Anaplasma, and Ehrlichia using standard or nested PCR with specific primers. RESULTS: All ticks collected from the skin were identified as Hyalomma asiaticum. The blood and tick samples harbored similar pathogens, including the Theileria species, T. annulata, T. luwenshuni, T. uilenbergi, and T. capreoli, the Anaplasma species A. bovis and uncultured Anaplasma, the Ehrlichia species E. canis and uncultured Ehrlichia, and a new haplotype of Babesia species. CONCLUSION: Our findings of anaplasmataceae and piroplasmida in Bactrian camels in Gansu provide a theoretical basis for deeper investigation into the epidemiology of tick-borne pathogens in these camels.

6.
Front Vet Sci ; 10: 1090517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035824

RESUMO

The regulatory axis plays a vital role in interpreting the information exchange and interactions among mammal organs. In this study on feed efficiency, it was hypothesized that a rumen-liver-muscle-fat (RLMF) regulatory axis exists and scrutinized the flow of energy along the RLMF axis employing consensus network analysis from a spatial transcriptomic standpoint. Based on enrichment analysis and protein-protein interaction analysis of the consensus network and tissue-specific genes, it was discovered that carbohydrate metabolism, energy metabolism, immune and inflammatory responses were likely to be the biological processes that contribute most to feed efficiency variation on the RLMF regulatory axis. In addition, clusters of genes related to the electron respiratory chain, including ND (2,3,4,4L,5,6), NDUF (A13, A7, S6, B3, B6), COX (1,3), CYTB, UQCR11, ATP (6,8), clusters of genes related to fatty acid metabolism including APO (A1, A2, A4, B, C3), ALB, FG (A, G), as well as clusters of the ribosomal-related gene including RPL (8,18A,18,15,13, P1), the RPS (23,27A,3A,4X), and the PSM (A1-A7, B6, C1, C3, D2-D4, D8 D9, E1) could be the primary effector genes responsible for feed efficiency variation. The findings demonstrate that high feed efficiency cattle, through the synergistic action of the regulatory axis RLMF, may improve the efficiency of biological processes (carbohydrate metabolism, protein ubiquitination, and energy metabolism). Meanwhile, high feed efficiency cattle might enhance the ability to respond to immunity and inflammation, allowing nutrients to be efficiently distributed across these organs associated with digestion and absorption, energy-producing, and energy-storing organs. Elucidating the distribution of nutrients on the RLMF regulatory axis could facilitate an understanding of feed efficiency variation and achieve the study on its molecular regulation.

7.
Front Physiol ; 14: 1056905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969587

RESUMO

Exosomes are a kind of extracellular vesicles that are produced and secreted by different mammalian cells. They serve as cargo proteins and can transfer different kinds of biomolecules, including proteins, lipids, and nucleic acids, which consequently act on target cells to exert different biological effects. Recent years have witnessed a significant increase in the number of studies on exosomes due to the potential effects of exosomes in the diagnosis and treatment of cancers, neurodegenerative diseases, and immune disorders. Previous studies have demonstrated that exosomal contents, especially miRNAs, are implicated in numerous physiological processes such as reproduction, and are crucial regulators of mammalian reproduction and pregnancy-related diseases. Here, we describe the origin, composition, and intercellular communication of exosomes, and discuss their functions in follicular development, early embryonic development, embryonic implantation, male reproduction and development of pregnancy-related diseases in humans and animals. We believe this study will provide a foundation for revealing the mechanism of exosomes in regulating mammalian reproduction, and providing new approaches and ideas for the diagnosis and treatment of pregnancy-related diseases.

8.
Front Vet Sci ; 9: 1068882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504859

RESUMO

Seasonal estrus is an important factor limiting the fertility of some animals such as sheep. Promoting estrus in the anestrus season is one of the major ways in improving the fecundity of seasonally breeding animals. The pineal-hypothalamus-pituitary-ovary (PHPO) axis plays a decisive role in regulating animal reproduction. However, the molecular mechanisms by which the PHPO axis regulates seasonal reproduction in animals are not well understood, especially in Tan sheep. To this end, we collected pineal, hypothalamus, pituitary and ovary tissues from Tan sheep during estrus and anestrus for RNA-Sequencing, and performed bioinformatics analysis on the entire regulatory axis of the pineal-hypothalamic-pituitary-ovary (PHPO). The results showed that 940, 1,638, 750, and 971 DEGs (differentially expressed genes, DEGs) were identified in pineal, hypothalamus, pituitary and ovary, respectively. GO analysis showed that DEGs from PHPO axis-related tissues were mainly enriched in "biological processes" such as transmembrane transport, peptide and amide biosynthesis and DNA synthesis. Meanwhile, KEGG enrichment analysis showed that the bile acid secretion pathway and the neuroactive ligand-receptor interaction pathway were significantly enriched. Additionally, four potential candidate genes related to seasonal reproduction (VEGFA, CDC20, ASPM, and PLCG2) were identified by gene expression profiling and protein-protein interaction (PPI) analysis. These findings will contribute to be better understanding of seasonal reproduction regulation in Tan sheep and will serve as a useful reference for molecular breeding of high fertility Tan sheep.

9.
Animals (Basel) ; 12(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36359113

RESUMO

Kisspeptin is a peptide hormone encoded by the kiss-1 gene that regulates animal reproduction. Our studies revealed that kisspeptin can regulate steroid hormone production and promote cell proliferation in ovarian granulosa cells of Tan sheep, but the mechanism has not yet been fully understood. We speculated that kisspeptin might promote steroid hormone production and cell proliferation by mediating the expression of specific miRNA and mRNA in granulosa cells. Accordingly, after granulosa cells were treated with kisspeptin, the RNA of cells was extracted to construct a cDNA library, and miRNA-mRNA sequencing was performed. Results showed that 1303 expressed genes and 605 expressed miRNAs were identified. Furthermore, eight differentially expressed miRNAs were found, and their target genes were significantly enriched in progesterone synthesis/metabolism, hormone biosynthesis, ovulation cycle, and steroid metabolism regulation. Meanwhile, mRNA was significantly enriched in steroid biosynthesis, IL-17 signaling pathway, and GnRH signaling pathway. Integrative analysis of miRNA-mRNA revealed that the significantly different oar-let-7b targets eight genes, of which EGR1 (early growth response-1) might play a significant role in regulating the function of granulosa cells, and miR-10a regulates lipid metabolism and steroid hormone synthesis by targeting HNRNPD. Additionally, PPI analysis revealed genes that are not miRNA targets but crucial to other biological processes in granulosa cells, implying that kisspeptin may also indirectly regulate granulosa cell function by these pathways. The findings of this work may help understand the molecular mechanism of kisspeptin regulating steroid hormone secretion, cell proliferation, and other physiological functions in ovarian granulosa cells of Tan sheep.

10.
Parasit Vectors ; 15(1): 356, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199104

RESUMO

BACKGROUND: When Theileria annulata infects host cells, it undertakes unlimited proliferation as tumor cells. Although the transformed cells will recover their limited reproductive characteristics and enter the apoptosis process after treatment with buparvaquone (BW720c), the metabolites and metabolic pathways involved are not clear. METHODS: The transformed cells of T. annulata were used as experimental materials, and the buparvaquone treatment group and DMSO control group were used. Qualitative and quantitative analysis was undertaken of 36 cell samples based on the LC-QTOF platform in positive and negative ion modes. The metabolites of the cell samples after 72 h of drug treatment were analyzed, as were the different metabolites and metabolic pathways involved in the BW720c treatment. Finally, the differential metabolites and metabolic pathways in the transformed cells were found. RESULTS: A total of 1425 metabolites were detected in the negative ion mode and 1298 metabolites were detected in the positive ion mode. After drug treatment for 24 h, 48 h, and 72 h, there were 56, 162, and 243 differential metabolites in negative ion mode, and 35, 121, and 177 differential metabolites in positive ion mode, respectively. These differential metabolites are mainly concentrated on various essential amino acids. CONCLUSION: BW720c treatment induces metabolic disturbances in T. annulata-infected cells by regulating the metabolism of leucine, arginine, and L-carnitine, and induces host cell apoptosis.


Assuntos
Theileria annulata , Theileria , Theileriose , Animais , Arginina/uso terapêutico , Carnitina/uso terapêutico , Bovinos , Dimetil Sulfóxido/uso terapêutico , Leucina/uso terapêutico , Naftoquinonas , Theileriose/tratamento farmacológico
11.
Animals (Basel) ; 12(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35739827

RESUMO

Animal growth traits are directly linked with the economics of livestock species. A somatostatin DNA vaccine has been developed to improve the growth of animals. However, the growth-promoting effect is still unsatisfying. The current study aimed to evaluate the effect of a novel eukaryotic dual expression vaccine known as pIRES-S/CST14-S/2SS, which encodes the genes obtained by fusing somatostatin (SS) and cortistatin (CST) into hepatitis B surface antigen (HBsAg). After transfection into GH3 cells with pIRES-S/CST14-S/2SS, green fluorescence signals were observed by fluorescence microscopy, suggesting the effective expression of CST and SS in GH3 cells using the IRES elements. Subsequently, both GH and PRL levels were found to be significantly lower in pIRES-S/CST14-S/2SS-treated cells as compared to the control group (p < 0.05). Furthermore, the antibody level, hormone secretion, and weight gain in the mice injected with novel recombinant plasmids were also evaluated. The anti-SS antibodies were detectable in all vaccine treated groups, resulting in significantly higher levels of GH secretion (p < 0.05). It is worth mentioning that pIRES-S/CST14-S/2SS (10 µg/100 µL) vaccinated mice exhibited a higher body weight gain in the second immunization period. This study increases the understanding of the relationship between somatostatin and cortistatin, and may help to develop an effective growth-promoting DNA vaccine in animals.

12.
Genes (Basel) ; 13(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741709

RESUMO

Non-coding RNAs, especially microRNAs (miRNAs), play an important role in skeletal muscle growth and development. miR-377 regulates many basic biological processes and plays a key role in tumor cell proliferation, migration and apoptosis. Nevertheless, the function of miR-377 during skeletal muscle development and how it regulates skeletal muscle satellite cells (SMSCs) remains unclear. In the present study, we proposed to elucidate the regulatory mechanism of miR-377 in the proliferation and differentiation of bovine primary SMSCs. Our results showed that miR-377 can significantly inhibit the proliferation of SMSCs. In addition, we found that miR-377 can reduce myotube formation and restrain skeletal myogenic differentiation. Moreover, the results obtained from the biosynthesis and dual luciferase experiments showed that FHL2 was the target gene of miR-377. We further probed the function of FHL2 in muscle development and found that FHL2 silencing significantly suppressed the proliferation and differentiation of SMSCS, which is contrary to the role of miR-377. Furthermore, FHL2 interacts with Dishevelled-2 (Dvl2) to enable Wnt/ß-catenin signaling pathway, consequently regulating skeletal muscle development. miR-377 negatively regulates the Wnt/ß-catenin signaling pathway by targeting FHL2-mediated Dvl2. Overall, these findings demonstrated that miR-377 regulates the bovine SMSCs proliferation and differentiation by targeting FHL2 and attenuating the Wnt/ß-catenin signaling pathway.


Assuntos
MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Bovinos , Diferenciação Celular/genética , Proliferação de Células/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Células Satélites de Músculo Esquelético/metabolismo
13.
Gene ; 807: 145934, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478820

RESUMO

Residual feed intake (RFI) is a measurement of feed efficiency, and is inversely correlated with feed efficiency. The differentially expressed genes (DEGs) associated with RFI vary substantially among studies, posing great challenges in finding the RFI-related marker genes. This study attempted to resolve this issue by integrating and comparing the multiple transcriptome sequencing data associated with RFI in the cattle liver, using differential, functional enrichment, protein-protein interaction (PPI) network, weighted co-expression network (WGCNA), and gene set enrichment analyses (GSEA) to identify the candidate genes and functional enrichment pathways that are closely associated with RFI. Four candidate genes namely SHC1, GPX4, ACADL, and IGF1 were identified and validated as the marker genes for RFI. Four functional enrichment pathways, namely the fatty acid metabolism, sugar metabolism, energy metabolism, and protein ubiquitination were also found to be closely related to RFI. This study identified several genes and signaling pathways with shared characteristics, which will provide new insights into the molecular mechanisms related to the regulation of feed efficiency, and provide basis for molecular markers related to feed efficiency in beef cattle.


Assuntos
Ingestão de Alimentos/genética , Metabolismo Energético/genética , Fígado/metabolismo , Ração Animal/análise , Animais , Bovinos , Bases de Dados Genéticas , Fator de Crescimento Insulin-Like I/genética , Metabolismo dos Lipídeos/genética , Fígado/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Transcriptoma/genética , Ubiquitinação/genética , Sequenciamento do Exoma/métodos
14.
Front Genet ; 12: 741878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675965

RESUMO

Residual feed intake (RFI) is an important measure of feed efficiency for agricultural animals. Factors associated with cattle RFI include physiology, dietary factors, and the environment. However, a precise genetic mechanism underlying cattle RFI variations in duodenal tissue is currently unavailable. The present study aimed to identify the key genes and functional pathways contributing to variance in cattle RFI phenotypes using RNA sequencing (RNA-seq). Six bulls with extremely high or low RFIs were selected for detecting differentially expressed genes (DEGs) by RNA-seq, followed by conducting GO, KEGG enrichment, protein-protein interaction (PPI), and co-expression network (WGCNA, n = 10) analysis. A total of 380 differentially expressed genes was obtained from high and low RFI groups, including genes related to energy metabolism (ALDOA, HADHB, INPPL1), mitochondrial function (NDUFS1, RFN4, CUL1), and feed intake behavior (CCK). Two key sub-networks and 26 key genes were detected using GO analysis of DEGs and PPI analysis, such as TPM1 and TPM2, which are involved in mitochondrial pathways and protein synthesis. Through WGCNA, a gene network was built, and genes were sorted into 27 modules, among which the blue (r = 0.72, p = 0.03) and salmon modules (r = -0.87, p = 0.002) were most closely related with RFI. DEGs and genes from the main sub-networks and closely related modules were largely involved in metabolism; oxidative phosphorylation; glucagon, ribosome, and N-glycan biosynthesis, and the MAPK and PI3K-Akt signaling pathways. Through WGCNA, five key genes, including FN1 and TPM2, associated with the biological regulation of oxidative processes and skeletal muscle development were identified. Taken together, our data suggest that the duodenum has specific biological functions in regulating feed intake. Our findings provide broad-scale perspectives for identifying potential pathways and key genes involved in the regulation of feed efficiency in beef cattle.

15.
Stem Cell Res Ther ; 12(1): 452, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34380561

RESUMO

Mitophagy is a specific autophagic phenomenon in which damaged or redundant mitochondria are selectively cleared by autophagic lysosomes. A decrease in mitophagy can accelerate the aging process. Mitophagy is related to health and longevity and is the key to protecting stem cells from metabolic stress damage. Mitophagy decreases the metabolic level of stem cells by clearing active mitochondria, so mitophagy is becoming increasingly necessary to maintain the regenerative capacity of old stem cells. Stem cell senescence is the core problem of tissue aging, and tissue aging occurs not only in stem cells but also in transport amplifying cell chambers and the stem cell environment. The loss of the autophagic ability of stem cells can cause the accumulation of mitochondria and the activation of the metabolic state as well as damage the self-renewal ability and regeneration potential of stem cells. However, the claim remains controversial. Mitophagy is an important survival strategy against nutrient deficiency and starvation, and mitochondrial function and integrity may affect the viability, proliferation and differentiation potential, and longevity of normal stem cells. Mitophagy can affect the health and longevity of the human body, so the number of studies in this field has increased, but the mechanism by which mitophagy participates in stem cell development is still not fully understood. This review describes the potential significance of mitophagy in stem cell developmental processes, such as self-renewal, differentiation and aging. Through this work, we discovered the role and mechanism of mitophagy in different types of stem cells, identified novel targets for killing cancer stem cells and curing cancer, and provided new insights for future research in this field.


Assuntos
Mitocôndrias , Mitofagia , Autofagia , Humanos , Lisossomos/metabolismo , Células-Tronco/metabolismo
16.
Sci Rep ; 11(1): 11530, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075159

RESUMO

ulked Segregant Analysis (BSA) is a rapid strategy for identifying genetic markers in specific regions of the phenotypical population and it has been widely used for QTLs mapping in smaller mixed F2 and F3 populations. We applied a modified BSA method to assessed genome-wide homozygous and heterozygous linkage patterns in the Chinese Wagyu Beef Cattle F2/F3 mixed population. Two overlapped regions from F2 and F3 populations on autosomes were found with high-density heterozygote alleles between high and low intramuscular fat groups. Regions from 24.8 M ~ 29.6 M of chromosome 23 were identified as most significantly correlated to the intramuscular fat in our samples. We also identified other 4 potential loci on chromosomes 5, 9, 15, and 21 correlated with Intramuscular fat. This study provided a novel low-cost method for QTLs mapping and identify molecular markers of phenotypical changes in a small mixed population.


Assuntos
Tecido Adiposo , Bovinos/genética , Ligação Genética , Músculo Esquelético , Locos de Características Quantitativas , Animais , Bovinos/metabolismo , Feminino , Marcadores Genéticos , Masculino
17.
Anim Reprod Sci ; 172: 76-82, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27449408

RESUMO

The aim of this study was to evaluate the efficacy of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis on follicular development and ovulation responses in crossbred buffaloes. A total of 158 crossbred buffaloes divided into four groups and were intramuscularly injected with 1×10(10) (T1, n=41), 1×10(9) (T2, n=37), 1×10(8) (T3, n=37) or 0 (C, n=43) CFU/ml bacteria delivered inhibin vaccine in 10ml PBS on day 0 and 14, respectively. All animals were administered with 1000 IU PMSG on day 28, 0.5mg PGF2α on day 30 and 200µg GnRH on day 32. The results showed buffaloes immunized with the bacteria delivered inhibin vaccine had significantly higher titers of anti-inhibin IgG antibody than control group (P<0.01). The number and diameter of large follicles (≥10mm) as well as ovulatory follicles in group T1 was significantly greater than group C (P<0.05). The growth speed of dominant follicles in group T1 was significantly faster than groups T3 and C (P<0.05), resulting in a greater conception rate in buffaloes with positive antibodies. These results demonstrate that immunization with the bacterial delivered inhibin vaccine, coupled with the estrus synchronization protocol, could be used as an alternative approach to improve fertility in crossbred buffaloes.


Assuntos
Búfalos/fisiologia , Inibinas/imunologia , Ovulação/fisiologia , Animais , Sincronização do Estro , Feminino , Folículo Ovariano , Salmonella/genética , Vacinas Atenuadas/imunologia , Vacinas de DNA/imunologia , Vacinas Sintéticas
18.
Exp Anim ; 65(1): 17-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26437787

RESUMO

To further improve fertility of animals, a novel gene RFRP-3 (RF-amide related peptide-3, RFRP-3) was used to construct DNA vaccines with INH α (1-32) (inhibin, INH) fragment for the first time. The aim of this study was to evaluate the effects of novel DNA vaccines on fertility in mice. Synthesized SINH and SRFRP (INH and RFRP genes were separately ligated to the C-terminus of the small envelope protein of the hepatitis B virus (HBV-S) gene) fragments were inserted into multiple cloning site of pIRES vector to develop p-SINH/SRFRP. The synthesized tissue plasminogen activator (TPA) signal sequence was then inserted into the p-SINH/SRFRP to construct p-TPA-SINH/TPA-SFRFP. Meanwhile, p-SINH was prepared and considered as positive control. Forty Kunming mice were equally divided into four groups and respectively immunized by electroporation with p-SINH, p-SINH/SRFRP and p-TPA-SINH/TPA-SRFRP vaccine (three times at 2 weeks interval) and saline as control. Results showed that the average antibodies (P/N value) of anti-INH and anti-RFRP in mice inoculated with p-TPA-SINH/TPA-SFRFP were significantly higher (P<0.05) than those inoculated with p-SINH/SRFRP and the positive rates were 100% (anti-INH) and 90% (anti-RFRP) respectively, at 2 weeks after the third immunization. Litter size of mice immunized with the three recombinant plasmids was higher (P<0.05) than that of the control, and litter size of mice immunized with p-TPA-SINH/TPA-SRFRP significantly increased (P<0.05) compared with p-SINH. These results suggested that the p-TPA-SINH/TPA-SRFRP harboring INH and RFRP genes was successfully constructed and had good immunogenicity, and might effectively increase litter size.


Assuntos
Fertilidade , Inibinas , Neuropeptídeos , Vacinas de DNA , Animais , Feminino , Fertilidade/imunologia , Células HeLa , Humanos , Tamanho da Ninhada de Vivíparos , Camundongos , Vacinas de DNA/imunologia
19.
Reprod Toxicol ; 60: 148-55, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26686910

RESUMO

ß-cryptoxanthin (CX), a major carotenoid pigment, can inhibit inflammatory gene expression in mice with nonalcoholic steatohepatitis. In the present study, we examined the anti-inflammatory effects of CX on lipopolysaccharide (LPS)-induced inflammation in mouse primary Sertoli cells and the possible molecular mechanisms behind its effects. The results showed that CX significantly inhibited LPS-induced decreases in cell viability and in the percentage of apoptotic cells. Moreover, CX inhibited the LPS-induced up-regulation of tumor necrosis factor α (TNF-α), interleukin-10 (IL-10), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in Sertoli cells. In addition, CX significantly limited the LPS-induced down-regulation of AR, HSF2, CREB, FSHR, INHBB and ABP in Sertoli cells. Western blot analysis showed that CX significantly suppressed NF-κB (p65) activation as well as MAPK phosphorylation. All the results suggested that CX suppressed inflammation, possibly associated with the NF-κB activation and MAPK of phosphorylation. Thus, CX may possess therapeutic potential against inflammation-related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , beta-Criptoxantina/farmacologia , Células de Sertoli/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Lipopolissacarídeos , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/metabolismo , Células de Sertoli/metabolismo , Espermatogênese/genética
20.
Anim Reprod Sci ; 164: 105-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26642750

RESUMO

The objective of the present study was to evaluate the effects of novel DNA vaccines fusing inhibin (INH) α (1-32) and RFamide-related peptide-3 (RFRP-3) genes on the immune response, reproductive hormone levels, and fertility of Tan sheep. Thirty-two female Tan sheep were divided into four groups (groups A, B, C, and D with 8 sheep per group) and respectively immunized (thrice, 20 d apart) with 0.6mg of p-TPA-SINH/TPA-SRFRP (group A), p-SINH/SRFRP (group B), p-SINH (group C) or 0.4ml saline (group D). Twenty days after primary immunization, all vaccines elicited significant immune responses, and the antibody levels of anti-INH and anti-RFRP-3 in the vaccinated groups were significantly higher (p<0.05) than that of the control group. Immunization with p-TPA-SINH/TPA-SRFRP induced higher antibodies against INH and RFRP-3. Hormone levels of FSH and LH in group A immunized with p-TPA-SINH/TPA-SRFRP were significantly higher (p<0.05) than those in group C, which are immunized with p-SINH and the control group 20 d after the third immunization. Additionally, the p-TPA-SINH/TPA-SRFRP, p-SINH/SRFRP, p-SINH and saline vaccine induced different twinning rate of ewes (37.5%, 37.5%, 12.5%, and 0, respectively), but no significant differences were found in improving twinning rate of ewes among four groups. These results suggested that neutralization of endogenous INH and RFRP-3 with novel DNA vaccine fusing INH α (1-32) and RFRP-3 genes successfully elicited a humoral immune response, increased reproductive hormone levels, but it did not significantly improve litter sizes and twinning rate of ewes in the present study.


Assuntos
Fertilidade/imunologia , Inibinas/imunologia , Neuropeptídeos/imunologia , Ovinos , Vacinas de DNA/imunologia , Animais , Anticorpos/sangue , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Tamanho da Ninhada de Vivíparos , Hormônio Luteinizante/sangue , Gravidez , Progesterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...